0 60 50 15 v 1 4 M ay 2 00 6 Character decomposition of Potts model partition functions . II . Toroidal geometry

نویسندگان

  • Jean-François Richard
  • Jesper Lykke Jacobsen
چکیده

We extend our combinatorial approach of decomposing the partition function of the Potts model on finite two-dimensional lattices of size L × N to the case of toroidal boundary conditions. The elementary quantities in this decomposition are characters Kl,D labelled by a number of bridges l = 0, 1, . . . , L and an irreducible representation D of the symmetric group Sl. We develop an operational method of determining the amplitudes of the eigenvalues as well as some of their degeneracies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X iv : m at h - ph / 0 60 50 16 v 1 4 M ay 2 00 6 Character decomposition of Potts model partition functions . I . Cyclic geometry

We study the Potts model (defined geometrically in the cluster picture) on finite two-dimensional lattices of size L×N , with boundary conditions that are free in the L-direction and periodic in the N -direction. The decomposition of the partition function in terms of the characters K1+2l (with l = 0, 1, . . . , L) has previously been studied using various approaches (quantum groups, combinator...

متن کامل

0 40 50 23 v 1 2 6 M ay 2 00 4 Finite Size Scaling for O ( N ) φ 4 - Theory at the Upper Critical Dimension

A finite size scaling theory for the partition function zeroes and thermodynamic functions of O(N) φ 4-theory in four dimensions is derived from renormalization group methods. The leading scaling behaviour is mean-field like with multiplicative logarithmic corrections which are linked to the triviality of the theory. These logarithmic corrections are independent of N for odd thermodynamic quant...

متن کامل

ar X iv : m at h - ph / 0 50 70 67 v 1 2 7 Ju l 2 00 5 Improved mixing bounds for the Anti - Ferromagnetic Potts Model on Z 2 ∗

We consider the anti-ferromagnetic Potts model on the the integer lattice Z. The model has two parameters, q, the number of spins, and λ = exp(−β), where β is “inverse temperature”. It is known that the model has strong spatial mixing if q > 7 or if q = 7 and λ = 0 or λ > 1/8 or if q = 6 and λ = 0 or λ > 1/4. The λ = 0 case corresponds to the model in which configurations are proper q-colouring...

متن کامل

ar X iv : m at h - ph / 0 50 70 67 v 3 2 8 N ov 2 00 5 Improved mixing bounds for the Anti - Ferromagnetic Potts Model on Z 2 ∗

We consider the anti-ferromagnetic Potts model on the the integer lattice Z. The model has two parameters, q, the number of spins, and λ = exp(−β), where β is “inverse temperature”. It is known that the model has strong spatial mixing if q > 7, or if q = 7 and λ = 0 or λ > 1/8, or if q = 6 and λ = 0 or λ > 1/4. The λ = 0 case corresponds to the model in which configurations are proper q-colouri...

متن کامل

ar X iv : m at h - ph / 0 31 20 41 v 2 7 M ay 2 00 4 PARTITION FUNCTION ZEROS AT FIRST - ORDER PHASE TRANSITIONS : PIROGOV - SINAI THEORY

This paper is a continuation of our previous analysis [2] of partition functions zeros in models with first-order phase transitions and periodic boundary conditions. Here it is shown that the assumptions under which the results of [2] were established are satisfied by a large class of lattice models. These models are characterized by two basic properties: The existence of only a finite number o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008